

CCC Annual Report **UIUC, August 19, 2015**

Transient Thermo-fluid Model of Meniscus Behavior and Oscillation Mark Formation

Xiaolu Yan

Department of Mechanical Science & Engineering University of Illinois at Urbana-Champaign

htinuous

Casting

onsortium

Background

- Meniscus region controls many casting defects, such as:
 - Level fluctuations
 - Slag entrapment
 - Deep oscillation mark
- Many coupled phenomena occur,
 - melting powder,
 - oscillating mold,
 - steel flow with superheat,
 - re-solidified slag rim hitting meniscus and pushing liquid slag into gap
 - heat transfer through the gap and top slag layer,
 - meniscus freezing,
 - overflow
 - Steel shell moving down

Objectives

- Investigate mechanism of oscillation mark formation
- Predict during mold oscillation
 - Transient flow behavior of slag in meniscus region
 - Transient heat flux, temperature profile near meniscus
 - Strand profile, shell thickness
 - Slag gap thickness, oscillation mark depth

Domain & modelling method

- 2D simulation of a center slice through mold, gap, shell and liquid in the meniscus region
- K-ω SST turbulent CFD model to allow both turbulent flow in steel and laminar flow in slag and boundary layer
- Transient heat transfer
- Solidification of slag rim by increased specific heat and viscosity (temperature dependent functions)
- Solidification of steel by extracting latent heat and increasing viscosity and fixing shell velocity to casting speed
- VOF (volume of fluid) method to separate slag & steel phases

Metals Processing Simulation Lab

Equations

•
$$k - \omega SST Model$$
:

$$\begin{cases} \frac{\partial}{\partial t}(\rho k) + \frac{\partial}{\partial x_i}(\rho k u_i) = \frac{\partial}{\partial x_j}\left(\Gamma_k \frac{\partial k}{\partial x_j}\right) + G_\omega - Y_\omega + S_\omega \\ \frac{\partial}{\partial t}(\rho \omega) + \frac{\partial}{\partial x_i}(\rho \omega u_i) = \frac{\partial}{\partial x_j}\left(\Gamma_k \frac{\partial \omega}{\partial x_j}\right) + G_\omega - Y_\omega + S_\omega \end{cases}$$

• VOF method:

$$\frac{1}{\rho_q} \left[\frac{\partial}{\partial t} \left(\alpha_q \rho_q \right) + \nabla \cdot \left(\alpha_q \rho_q \overrightarrow{v_q} \right) = S_{\alpha_q} + \sum_{p=1}^n \left(\dot{m}_{pq} - \dot{m}_{qp} \right) \right]$$

• Solidification:

$$\beta = \frac{T - T_{sol}}{T_{liq} - T_{sol}}$$

Metals Processing Simulation Lab

7

Material property & casting condition

Fix solid steel shell velocity

- ADJUST UDF is used to fix steel shell velocity. It changes its value to casting speed at the beginning of each calculation iteration.
- When a cell satisfies:
 - Temperature $< T_{sol}$ -0.1K
 - VOF fraction of steel > 0.8
 - Fix: $\begin{cases} V_x = 0 \\ V_y = 1.39m/min = casting speed \end{cases}$
- Case 1: only adjust bottom of shell (y < 88mm)
- Case 2: applied to whole domain (including shell tip in meniscus region)

Metals Processing Simulation Lab

University of Illinois at Urbana-Champaign

Steel shell viscosity

- Plasticity dominates solid steel mechanical behavior near solidus temperature
- Stress depends more on strain
 Tate than strain
- Viscosity is appropriate to describe its mechanical behavior
- Current model only uses viscosity ~10³Pa · s to avoid convergence issues with the real viscosity (that is 10⁴ ×higher)

- Case 1: Only has 10³Pa · s viscosity in meniscus region
- Case 2: In addition, uses Adjust function to fix velocity, effectively making viscosity infinite

12

11

Steel shell viscosity - theory

Constitutive equations for delta-ferrite

1	$\dot{\epsilon} (1/s) = 0.1 F_{\delta}^{n}$
	$\overline{\sigma}(Mpa)$
ł	$f_{c} \cdot \left(\frac{T(K)}{300}\right)^{-5.52} \cdot (1 + 1000\bar{\epsilon})^{m}$
	$f_c = 13678 \times (pct \ C)^{-0.0556}$
	$n = (1.617 \times 10^{-4} \times T(K) - 0.06166)^{-1}$
	$m = -9.4156 \times 10^{-5} \times T(K) + 0.349501$

Li C & BG Thomas, Met Trans B, 2004

 $\implies \left\{ \begin{array}{l} \mu = \frac{\tau_{xy}}{\dot{\epsilon}_{xy}} = \frac{2}{3} f_c \cdot \left(\frac{T(K)}{300}\right)^{-5.52} \frac{1}{\dot{\epsilon}} (10\dot{\epsilon})^{\frac{1}{n}} \\ f_c = 13678 \times (pct \ C)^{-0.0556} \\ n = (1.617 \times 10^{-4} \times T(K) - 0.06166)^{-1} \end{array} \right.$

Temperature (K)	Pct Carbon (%)	Von-Mises Strain Rate (1/s)	Viscosity (Pa.s)
1800	0.001	0.01	4×10^{7}
1800	0.001	0.1	$6.8 imes 10^{6}$
1800	0.001	1	1.15×10^{6}
1800	0.01	0.01	3.5×10^{7}
1800	0.1	0.01	3.1×10^{7}

Xiaolu Yan

0 17 tinuous Casting Consortiu

University of Illinois at Urbana-Champaign

Modeling Procedure

Metals Processing Simulation Lab

- 1. Initialize phase fraction distribution (slag vs steel) with Bikerman Eqn.
- 2. Flow-only transient simulation to smooth phase interface (meniscus shape)
- 3. Thermal-only steady state simulation to establish temperature field and form initial shell
- 4. Coupled flow-thermal transient simulation with no mold oscillation to establish flow field
- 5. Fully coupled transient simulation for 8 cycles (case 1) and 2 cycles (case 2)
- 1 cycle of simulation takes 1 day on 6 core PC

13

Viscosity Solution @7.25s

Velocity – case 1

Temperature – case 1

Slag rim near meniscus represented by 1000C contour

inuous Casting onsortium

slow thermal response of mold

Video

Temperature in gap – case 1

X axis expanded

Inuous sting ≎nsortium

- Note: solid layer on mold wall:
- nonlinear temperature gradient across gap due to fluid flow
- Slag gap grows, (from shell tip down

Initial solidification & OM formation – case 2

- Duration 2 cycles
- Shell is rigid after solidification (turning blue)
- Overflow happens when mold has maximum speed upward
- Small hook forms (even with no undercooling)
- Smaller slag gap compared to bending mechanism

Video

 Slag gap gets wider as simulation goes on

Video

22

X (mm)

40

20

0⊾ 20

• 22

Time: 10.135 s

Heat flux at mold hot face

nuous asting Consortium

Thermocouple locations

Shear stress at mold hot face

Conclusion - modelling

- New thermal-fluid VOF model of mold, slag, powder, solidifying steel shell, and gap has been developed to investigate initial solidification
- Model can predict oscillation mark formation, with different mechanisms (both bending and overflow) according to different material property (steel viscosity)

University of Illinois at Urbana-Champaign

Casting

Conclusion – OM mechanism

Metals Processing Simulation Lab

- Low viscosity steel (nonphysical) Bending mechanism
 - OM forms when mold at lowest position
 - Wider meniscus gap, causing lower meniscus heat flux and less mold TC temperature variations
 - Very wide contoured OM shape
 - Slag consumption profile similar to previous work, but average consumption is low
 - Nonphysical because frozen meniscus would break under so much bending
- Rigid steel viscosity Overflow mechanism
 - Rigid shell (moving downward) combined with meniscus movement exceeds
 - Occurs when mold has maximum speed going up
 - OM shape is shallower than that from bending mechanism
 - Seems physically reasonable
 - We expect higher meniscus heat flux, larger TC temperature fluctuation.

41

Future work

- Eliminate the cooling trend by improving powder surface inlet boundary condition
- Improve realism of shell behavior at meniscus by increasing viscosity (if possible) or fine tune the ADJUST function zone
- Validate with more measurements
- Parametric studies

University of Illinois at Urbana-Champaign

Acknowledgments

Metals Processing Simulation Lab

 Continuous Casting Consortium Members (ABB, AK Steel, ArcelorMittal, Baosteel, JFE Steel Corp., Magnesita Refractories, Nippon Steel and Sumitomo Metal Corp., Nucor Steel, Postech/ Posco, SSAB, ANSYS/ Fluent)

43